

Abstracts

High-Power, High-Efficiency Cell Design for 26 GHz HBT Power Amplifier

S. Tanaka, S. Murakami, Y. Amamiya, H. Shimawaki, N. Furuhata, N. Goto, K. Honjo, Y. Ishida, Y Saito, K. Yamamoto, M. Yajima, R. Temino and Y. Hisada. "High-Power, High-Efficiency Cell Design for 26 GHz HBT Power Amplifier." 1996 MTT-S International Microwave Symposium Digest 96.2 (1996 Vol. II [MWSYM]): 843-846.

We describe a 6-chip combination HBT power amplifier and a single-cell chip with excellent power-added efficiency (PAE) and power density at 24-26 GHz. The power amplifier, based on our conventional chip design, exhibited 2.2 W output power with 19 % PAE and 5 dB linear gain. To further improve the efficiency and power-density, various types of HBT cells were characterized. The optimum cell ($184 \mu\text{m}^2$) exhibited 740 mW output power equivalent to power density of $4.0 \text{ mW}/\mu\text{m}^2$, while a record high PAE of 42% was obtained. These results compare well with the best data reported at lower frequency bands (<18 GHz), thereby showing great potential for high-power, high-efficiency HBTs in near mmWave bands.

[Return to main document.](#)